- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Chanton, Patricia (1)
-
Knobbe, Loren N (1)
-
Mason, Olivia U (1)
-
Mortazavi, Behzad (1)
-
Payne, Paige E (1)
-
Zaugg, Julian (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
Wilkins, Laetitia_G E (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wilkins, Laetitia_G E (Ed.)ABSTRACT Anaerolineae, particularly uncultured representatives, are one of the most abundant microbial groups in coastal salt marshes, dominating the belowground rhizosphere, where over half of plant biomass production occurs. However, this class generally remains poorly understood, particularly in a salt marsh context. Here, novelAnaerolineaemetagenome-assembled genomes (MAGs) were generated from the salt marsh rhizosphere representingAnaerolineales,Promineifilales, JAAYZQ01, B4-G1, JAFGEY01, UCB3, andCaldilinealesorders. Metagenome and metatranscriptome reads were mapped to annotated MAGs, revealing nearly allAnaerolineaeencoded and transcribed genes required for oxidation of carbon compounds ranging from simple sugars to complex polysaccharides, fermentation, and carbon fixation. Furthermore, the majority ofAnaerolineaeexpressed genes involved in anaerobic and aerobic respiration and secondary metabolite production. The data revealed that the belowground salt marshAnaerolineaein the rhizosphere are important players in carbon cycling, including degradation of simple carbon compounds and more recalcitrant plant material, such as cellulose, using a diversity of electron acceptors and represent an unexplored reservoir of novel secondary metabolites.IMPORTANCEGiven that coastal salt marshes are recognized as biogeochemical hotspots, it is fundamentally important to understand the functional role of the microbiome in this ecosystem. In particular,Anaerolineaeare abundant members of the salt marsh rhizosphere and have been identified as core microbes, suggesting they play an important functional role. Yet, little is known about the metabolic pathways encoded and expressed in this abundant salt marsh clade. Using an ‘omics-based approach, we determined thatAnaerolineaeare capable of oxidizing a range of carbon compounds, including simple sugars to complex carbon compounds, while also encoding fermentation and carbon fixation. Surprisingly,Anaerolineaeencoded and transcribed genes involved in aerobic respiration, which was unexpected given the reduced nature of the salt marsh rhizosphere. Finally, the majority ofAnaerolineaeappear to be involved in secondary metabolite production, suggesting that this group represents an unexplored reservoir of novel and important secondary metabolites.more » « lessFree, publicly-accessible full text available January 21, 2026
An official website of the United States government
